One hundred prisoners and a lightbulb*

Paul-Olivier Dehaye, Daniel Ford, Henry Segerman
November 14, 2003

A single lightbulb flickers into life in the center of the room. 100 prisoners
shade their eyes from the glare, then focus on the prison warden standing by the
lightswitch, with a standard evil-puzzler’s glint in his eye. He begins to speak:

"In one hour, you will all be taken to your cells to be kept in solitary
confinement, with no possibility of communicating with any of your
fellow inmates.

Well, almost no possibility... every night from now on, I will choose
one of you at random, retrieve you from your cell, and take you to
this room, where you may see if the lightbulb is on or off, and you
may turn it on or off as you wish."

A murmur ripples around the room as the prisoners consider the prospect of
having such an effect on their hitherto impotent and externally controlled exis-
tences.

"If at some point, I take you to this room and you believe that all
100 prisoners have been chosen and taken here at some time, then
you may tell me this.

If you are correct, I will free you all. If of course you are incorrect...
well let’s say none of you will live to flip any more lightbulb switches
in this world."

He exits with a flourish of his cloak, thoughtfully leaving the lightbulb on.

The prisoners are in the dark as to how to get free, but they are perfectly
clear about wanting to be able to at least flip light switches into old age (and
it looks like they might need to!). So they must come up with a strategy that
will announce that all 100 prisoners have been chosen only if they actually have,
with 100% certainty, hopefully before they all die of old age.

At first it seems impossible that any one prisoner could know about what
the other 99 have been up to. Coming into the room and seeing the lightbulb is
on doesn’t seem to give you much information. You don’t know who set it, and
if you flip the switch you have no idea who will see that you flipped it. There

*This is the accepted version of a paper that was published in the Mathematical Intelli-
gencer 24 (2003) no. 4, pp 53-61. The publishing staff made some minor corrections. The
editors appended a very short biography of each of the authors.

seems to be no way to send a message to anyone in particular. It seems hopeless
that they will get out at all. But in fact:

Amazing fact 1. They can get out.

Here is how. (You may wish to ponder on your own before reading on.)

If at first you don’t succeed...

Strategy 1. Cut the sequence of days into blocks of length 100. The first
prisoner to enter the room in a given block turns the lightbulb off. If a prisoner
enters the room a second time in the same 100 day block, then he turns the
lightbulb on. If a prisoner enters the room on the last day of a 100 day block,
and it is his first time, and the lightbulb is still off, then that prisoner knows
that every prisoner has been chosen exactly once in this 100 day block. He then
correctly declares that all prisoners have been in the central room at least once.
If the lightbulb is on on the last day in a block then we have failed this time
so we try again in the next block of 100 days, and keep trying until someone
announces.

Expected results for strategy 1. The probability of succeeding in any given
block is the number of orderings of the 100 prisoners divided by the number
of possible ways the prisoners could have entered the room. With n prisoners,
that is (n!/n").

The expected number of blocks which must be used before succeeding is
equal to 1/p where p is the probability of succeeding with one block. To see
this, suppose p is the chance of succeeding in any given block. Then the expected
number of blocks until we succeed is equal to), kpg®~! where ¢ = 1 — p. This
is equal to

pdiqu/(l — Q) =p/P=1/p

Thus the expected number of blocks is n™/n!. Each block has length n
so the expected number of days until freedom is n"*!/n!, which is O(n'/2e™)
(using Stirling’s formula). For 100 prisoners, the expected value is 100'°! /100!
or approximately 10%4.

They can get out, although this is a disappointingly large number for the
prisoners: about 10*! years. Sadly the universe may have ended long before
they are free [4].

Amazing fact 2. They can get out before the universe ends.

Soul-collecting

Strategy 2. One prisoner, who will be known as The Countess, will be respon-
sible for announcing that every other prisoner has entered the room at some
time. The other (n — 1) prisoners will be ordinary.

Each ordinary prisoner starts with a single token, called a soul, which they
will try to leave in the central room. The Countess will collect souls from the
central room until she has all of them. She may then declare success.

We may assume that the lightbulb starts in the off position (as the prisoner
who enters on the first day may turn it off before doing anything else).

When an ordinary person enters the room and finds the lightbulb off,
they may drop their soul in the room, if they have not already done so, by
turning the lightbulb on. If the lightbulb is already on then they leave it
alone.

When the Countess enters the room, if she finds the lightbulb on then she
turns it off and adds one to her soul count. If her count is now n — 1 then
she knows that everyone must have entered the room so she can declare.
If the lightbulb is off when she enters she leaves it off.

Expected results for strategy 2. For the strategy to complete we need to
have a sequence of events happen. We first need a soul dropped in the room,
then for the Countess to pick it up, then another soul dropped, etc. As the
number of uncounted souls goes down, the probability of a new one turning up
on the next day goes down from (n — 1)/n for the first soul to 1/n for the last
soul. Meanwhile, the probability for the Countess to show up on the next day
is constantly 1/n.

Since the expected time needed for an event occuring with probability p on
the next day is 1/p, we immediately get that the time is

n (Z %) + (n—1)(n),

k=1

which is between n? and 2n?. Therefore the expected number of days until the
prisoners escape is O(n?).

This is much better than our previous exponential solution. The 100 prisoners
should get out in around 10,400 days, or about 29 years. They will be past their
best, but they will live to see the outside world. However, they can do much
better than that:

Amazing fact 3. They can get out before they are ineligible for the Fields
medal.

Pyramid Scheme

This is again a method for collecting souls. This time there is no single counter.
Rather everyone is involved in a process of collecting souls together. The light-
bulb will be worth different numbers of souls on different nights.

Strategy 3. A sequence is given which describes how many souls the lightbulb
is worth on each night, which is always a power of two. Let V(n) denote the

number of souls that the lightbulb is worth if it is left in the on position on
night n, or discovered on on night n + 1.

Assume that the number of prisoners is a power of two. This will turn out
not to matter in the end.

A prisoner enters the room on a night and collects however many souls have
been left there from last night (so if it is night n and the lightbulb is on he picks
up V(n — 1) souls) and turns the lightbulb off. He now looks at the number of
souls M that he has collected, but represented in base 2. If the coming night is
worth V(n) = 2* souls then he looks at the binary bit of M worth 2% souls. If
this bit is 1 then he drops 2* souls by turning the lightbulb on and subtracting
2% from M, his own total of souls collected. If the 2*-bit is zero then he leaves
the lightbulb off.

Notice that this has the effect that souls are ‘glued together’ into lumps of
size 2 which can be transferred on nights which are worth 2. Whenever a
prisoner has two lumps of size 2¥ he glues them together into a lump of size
2k+1 This may occur if he has just picked up a 2¥ lump or has just glued two
smaller 2°~1 lumps together. When all the souls have been glued together into
one lump of size n = 2!°22™ then the prisoner who holds this lump declares
success.

We have yet to say what would be an efficient choice of values for the V'(n).
Starting with a block of nights worth 1 is a good idea, to hopefully glue all
the single souls into pairs. Then follow with a block of nights worth 2 to glue
into blocks of 4 souls, and so on. We want the lengths of the blocks to be long
enough to give a good chance of gluing all the lumps of size 2*~! into lumps of
size 2%, but not too long as we don’t want to waste time once they have all been
glued.

Expected results for strategy 3. In order to achieve a good asymptotics, we
start with a block of (nlogn+nloglogn) 1-nights, then (nlogn+nloglogn) 2-
nights, then (nlogn+nloglogn) 4-nights, all the way up to (nlogn+nloglogn)
(log, n)-nights. If we have failed after this number of days then we can simply
throw up our hands and start over again. In other words, the sequence V(n)
repeats.

The probability of gluing all lumps of into lumps of size 2¥ within
nlog(n) + cn nights (where ¢ is some constant) is bounded by e~¢ * asymptot-
ically. This is known as the coupon collector’s problem [2]. With some careful
estimation this result can be extended by changing c to a function ¢(n) < log(n).
This gives us a probability of successfully completing each stage of at least
e_ﬁe(n), where €(n) is an error factor such that €(n)°2(") tends to 1.

The chance of successfully completing all log,(n) stages is at least E(i;i%
Thus the expected number of times we need to go through the whole cycle is

less than elog2(e)m. This gives that the expected number of days is of
order €'°%2(¢) [nlog(n)(log(n) + log(log(n)))], which is O(n log(n)?).

2k—1

It can be proved that no changes to the lengths of blocks of nights V'(n) can

improve the asymptotics, but what if we want the best sequence for precisely
100 prisoners?

Our assumption that the number of prisoners is a power of two can be
relaxed. To apply our strategy, we just need that everyone starts with at least
one soul. So, with 100 prisoners for example, one prisoner could be given 29
souls and the other 99 prisoners given 1 soul to start with. The prisoner who
first collects 128 souls declares.

To try to get a good upper bound on the expected number of days to freedom
we used a computer simulation to search through the choices for V' (n). Our best
give around 4400 days, or 12 years. One sequence of block lengths which has
about this average is [730, 630, 610, 560, 520, 470, 560, 720, 490, 560, 570,
560, 590, 590], that is to say: 730 1-days, then 630 2-days,... then 560 64-
days, then 720 1-days,... then 590 64-days, then (back to the start) 730 1-days,

. The optimisation algorithm works by trying to optimise the V(n) for two
passes through the types of days (1-days then 2-days, then 4-days etc.) then
just repeats that sequence for the unlikely cases in which the prisoners have still
not finished after 2 passes. It is not entirely clear why the above sequence is
good, though it makes sense that the first six terms are decreasing since less
people have to ‘meet’ in later stages. It also makes sense that the seventh term
is larger, since one would want to give a lot of time for the last two blocks of
64 souls to meet. Giving up at this stage means having to continue through the
next seven stages to finish up.

Can they do better with some other strategy? For 100 prisoners we
suspect that some sort of hybrid algorithm is probably the best, to use good
points of more than one strategy. Collecting together souls as in the pyramid
scheme is certainly a good idea to start with, but something else may be better in
the endgame. A hybrid given by B. Felgenhauer [1] uses the pyramid scheme to
start with, but has a Countess start collecting midway through. His sequence of
block lengths (chosen by hand) has expected days of around 3949, and running
our optimisation program on on the variables for his strategy gives around 3890.

Asymptotically, they cannot do better than O(nlogn) expected number of
days to freedom, because that is the expected number of days for everyone to
have visited the room, ignoring that all prisoners actually have to communicate!

Variations

Here are some variations you might like to think about. Each variation assumes
all the conditions in the original problem, but with some aspects altered. In
each case, you might like to ask yourself whether the prisoners can escape, and
if so what is an efficient way to do this. We assume that the lightbulb always
starts off.

1. Multiple bulbs — The central room contains two (or more) lightbulbs
(the communication channel is wider).

10.

11.

. Multiple rooms — There are two (or more) identical rooms. The

prisoners are taken to one at random but don’t know which they are
in.

. Separate transmitter /receiver — The warden turns the lightbulb off

at 12AM, chooses one prisoner to visit at 1AM, and chooses again for
someone to visit at 2AM. The visitors only transmit or receive, not both.

. Malicious Warden — The warden is malicious and knows the strategy

that the prisoners will use (he listens to them agreeing on what to do).
Each day he will choose which prisoner to allow into the room. His con-
science demands that he allows every prisoner to visit the room infinitely
often.

. All prisoners have to announce — The condition for everyone to be

freed is that every prisoner must correctly announce (at some time). In
other words: every prisoner must be sure that all prisoners have been to
the room.

. Simultaneous announcing — Anyone can announce on any day, not

just the prisoner who was selected that morning. The condition for every-
one to be freed is that everyone must correctly announce on the same day.
If they are incorrect or if some announce while some do not then they all
die.

. Prisoners are freed when they announce — Everyone must cor-

rectly announce at some time. When someone announces, they are freed
(never visit the room again), but the others stay until they too announce.
Visitors are chosen uniformly among the remaining prisoners. Note that
the prisoners are still most interested in everyone escaping, rather than
minimizing their own time to escape.

. Red/Blue cells (one announcer) — The prisoners are allocated red or

blue prison cells. The announcing prisoner must correctly say how many
red cells there are in order for them all to be released.

. Numbers in cells (one announcer) — Each cell has a natural number

written on the wall. The announcer must give all the numbers.

All prisoners send messages to all prisoners — (this is a combination
of 5 and 9).

Random visiting times — The prison is subterranean, with no clocks,
calendars, or any other information as to what the time is. The prisoners
lose all track of time, and the warden chooses prisoners at random times.
In other words, the prisoners have no idea how many people have visited
the room since they were last there, and cannot use strategies which count
days. They only know the order in which events occur.

12.

13.

14.

15.
16.

Random times, all prisoners must announce — Combine variations
5 and 11. Every prisoner must announce that everyone has visited at some
time, and they cannot use day counting strategies.

Random times, message from one to one — There are only two
prisoners and the transmitter has to send a message (a natural number)
to the receiver, but as in 11 they cannot count days.

Random times, messages from many to one — Combine variations
9 and 11. One announcer must give all numbers written on the walls, and
the prisoners lose track of time.

Random times, messages from many to many, 2 lightbulbs

Random times, messages from many to many, 1 lightbulb

We now give a spoiler for most of these problems. It turns out that the
strategies listed above (or slight modifications of them) are suitable for most of
these variations.

1.

Multiple bulbs — Counting souls (strategy 2) will still work, and can
be made even faster as 2* souls can be left in a room which has & distinct
lightbulbs. log, n lightbulbs allow for the best possible time to escape —
as soon as everyone has actually been in the room then the prisoner in the
room can declare. Strategy 3 can also be improved by allowing gluings of
souls into larger lumps, such as lumps of size (2%)! if there are k distinct
lightbulbs.

Multiple rooms — Counting souls (strategy 2) will still work. It will
be slower, although the expected time until escape (for number of rooms
independent of n) is still O(n?) days.

Seperate transmitter/receiver — A strategy similar to soul-collecting
(strategy 2) works. The Countess always picks up and never drops souls.
Everyone else drops souls at every opportunity (though they are forced to
pick them up if they find them). This strategy has expected time between
n?logyn and n3. (If there are k souls outstanding then the chance of
the countess picking one up the coming night is between % X % and #,
depending on how those k souls are distributed. This gives a total expected

time of between n?log, n and n®.)

. Malicious Warden — Strategy 2 will work, although there is clearly no

bound on the time until escape — it depends on how mean the Warden
wants to be.

All prisoners have to announce — ‘Try-try-again’ (strategy 1) works.
Interleaving cycles of strategy 3 will also work: Each prisoner has one type
of soul for each prisoner who will have to announce. One cycle is given to
each prisoner’s attempts to collect the souls destined for her, then after n

8,9, 10.

11.
12.

of these a second cycle is devoted to each prisoner and so on. This gives
an expected time of n?log?(n).

Simultaneous announcing — The prisoners cannot be sure of escaping.
Suppose they will announce on day A. There is a first day, D, on which
they all know this. The prisoner who enters on day D knows that they have
entered and the state of the lightbulb. Every other prisoner only knows
that they did not enter the room on that day. If a different prisoner entered
on day D then all of the other prisoners who did not enter would have the
same information, and so would have to come to the same conclusion: that
they should announce on day A (provided there are at least 3 prisoners).
Therefore it cannot matter who enters on day D, so they must all know
on day D — 1. Which contradicts the assumption that D was the first day
they all knew they would announce on day A.

Prisoners are freed when they announce — ‘Sloshy’ soul-collecting
(as in the answer to variation 12 below) will work. When a prisoner has
collected 100 souls and then given them all away again they may declare
and be set free.

Red/Blue cells, or Numbers in cells (one or all announcer(s)) —
The prisoners can escape. See the Uber-theorem (below) for a strategy
and proof.

Random visiting times — Counting souls (strategy 2) will still work.

Random times, all prisoners must announce — ‘Sloshy’ soul count-
ing will work. The lightbulb is always worth one soul. Any prisoner who
has not announced does the following: If the lightbulb is on when they
enter then they collect the soul and turn the lightbulb off. If the lightbulb
is off when they enter and they have one or more souls then they drop one
and turn the lightbulb on. Any prisoner who has already announced al-
ways drops any souls which they have, and leaves any that are in the room.
This strategy has expected time order less than or equal to e”. This can
be shown by constructing an appropriate Markov chain and giving lower
bounds for the chance that a given prisoner will announce in the next 200
days. Notice that when there is only one prisoner left to announce, this
strategy reduces to strategy 2, soul-collecting with one Countess.

Note that this strategy would also work (less efficiently) if prisoners who
have already announced just continue to slosh souls around (give and take
souls rather than just give). This is because a random walk in a finite
space will eventually get everyplace. We will use this fact extensively
later on.

Another strategy is that each prisoner who is not a soul-collector has a
(very small) chance each day they enter of becoming one. After a number
of visits to the room as a soul-collector they give up and go back to being

13.

14.

an ordinary soul-giver. Any prisoner who has already announced always
gives souls and never collects.

Can you think of a variation where the best strategy is worse than expo-
nential in the number of prisoners?

Random times, message from one to one — We have two prisoners,
one of whom is trying to send a message to the other. The transmitting
prisoner encodes the message as a natural number, M. He tries to give
the receiving prisoner M souls. The problem now is how the receiver
knows when the message has been sent — how does she know when she
has received all of the souls? To do this she occasionally puts a soul back
into the room when she finds it empty. Hopefully the transmitter, having
dropped all of his souls, will take the last soul back — thus indicating
that he is finished. The receiver will then see that the soul has been taken
and know that all of the souls have been sent, because the transmitter will
only pick up a soul when he is done.

To do this reliably the two prisoners behave as follows:

The transmitter drops all of his souls until he has none left. When he has
no souls left he will take one soul from the room if he can. When he has
one soul he will drop it in the room if he can.

The receiver takes every soul that she can, although she occasionally drops
one back in the room (‘pings’). If when she next enters the room she finds
that the soul she has dropped has been taken, then she knows that the
transmitter is finished and so knows the total number of souls sent.

Random times, messages from many to one — For n prisoners
transmitting and one receiving, the transmitters all behave as in variation
13. First suppose that the receiver wants to know the sum of the numbers
of the transmitters, M.

This time the receiver occasionally tries to drop n souls back at the same
time. The only way that all n pings will be taken is if all n of the transmit-
ting prisoners are finished. When she succeeds then her maximum value
was the sum of the numbers of the transmitters, M.

What happens is that the receiver’s total collected souls usually increases,
but never falls back as much as n from the current all-time maximum un-
less that maximum is the total number of souls being transmitted. When
a transmitter finishes, the receiver’s total is allowed to slosh back by one
more than before. When all transmitters are finished then the receiver’s
total will slosh between M and M — n, and when she sees both extremes
in that order then she knows it is done.

Knowing the total, M, is enough to allow all the n transmitters to send
arbitrary messages. Choosing base 2, give the i-th transmitter digits 4,7+
n,i+ 2n, ... in which to encode his message.

15. Random times, messages from many to many, 2 lightbulbs — We
can use the solution to variation 13 together with a way to pass around
who is transmitter and who is receiver. To be precise, they use lightbulb
one just as in 13. Some prisoner is chosen to be the first transmitter. We
assume lightbulb two is on to start with. Whoever turns it off (picks up
the ‘listening stick’) is the first receiver. The transmitter sees that the
listening stick has been picked up, and starts transmitting on lightbulb
one. When the receiver knows the message is done, he puts down the
listening stick and becomes the new transmitter. The new receiver is
whoever next picks up the stick. The prisoners keep sending messages
around (without knowing who they are transmitting to) and eventually
each prisoner collects all the messages.

16. Random times, messages from many to many, 1 lightbulb — See
the Uber-Uber-theorem below.

Uber-theorems

We will now give our method for variations 8, 9 and 10.

It turns out that each prisoner can transmit an arbitrary message to all of
the other prisoners, using only the one light.

We will start with one prisoner transmitting one bit to every other prisoner.
If the transmitter wants to send a 0-bit then on any even-numbered day he
leaves the lightbulb on and on any odd-numbered day leaves the lightbulb off.
If he wants to send a 1-bit then on any even day he leaves the lightbulb off
and on any odd day he leaves the lightbulb on. Every other prisoner leaves the
lightbulb off. Now any prisoner who finds the lightbulb on when they enter
the room will know for sure that the transmitted bit is a 0 or a 1, depending on
whether the previous day was even or odd. Every prisoner will find the lightbulb
on at some time (with probability 1), and so will receive the message. Of course,
there is nothing special about even and odd days. Any bijection between N and
{0,1} x N would do just as well. For example, j <> (0, k) would mean that day
j is the k*® 0-bit day. Those days whose number correspond to (0,7n) are ‘even
days’ and those which correspond to (1,m) are ‘odd days’.

To send two bits, divide the days into four sets. In other words, provide a
bijection between N and {0,1} x {0,1} x N. The first bit is represented by the
first two types of day, 0 and 1 mod 4 say, and the second bit by the other two
types of days, 2 and 3 mod 4 say. Any prisoner who finds the lightbulb on will
know for sure one of the bits being transmitted.

To transmit a message of arbitrary length, provide a bijection between N
and {0,1} x N x N.

To allow every prisoner to transmit a message to every other prisoner, first
divide the days among the prisoners (so that each is allocated an infinite number)
and then run the above algorithm with prisoner k transmitting on days which
are allocated to her. For M prisoners, this can be thought of as given by a

10

bijection between N and {1,--- , M} x {0,1} x N x N.

To speed up transmission, if another prisoner knows a given bit in one of the
messages being transmitted then they can retransmit this bit by acting as the
transmitter would — ‘echoing’ the message.

Uber-Uber-theorem

We will now discuss a method that allows each of the prisoners to send a set of
arbitrarily long messages, one to each other prisoner. We assume further that
we are in the setting of variation 11 (‘Random visiting times’), and hence that
the prisoners have no time reference other than the order in which events occur.
Unlike all the variations we discussed until now, this one could not be solved
using direct modifications of strategies 1 or 2. One of the authors (D.F.) came
up with what we think is an original strategy.

The idea of the method

e The n prisoners will have agreed upon an ordering among them ahead of
time.

e Prisoner 1 will be the observer, looking at the system formed by all the
other prisoners (and the lightbulb). Those non-observers will be called
robots because they will follow a simple rule.

e Before starting his rule, the first transmitter, say prisoner n, introduces 0
or 1 souls into the system.

e The observer will try to deduce how many souls were originally intro-
duced from the behavior of the robots. For this, prisoner 1 has different
procedures at his disposal:

— Two testing procedures Py, P, that allow prisoner 1 to conduct expe-
riments. He is trying to answer positively to one of the two questions
Qo,Q1: "Did prisoner n introduce i souls (i = 0 or 1) in the sys-
tem?". However, both Py and P; can only produce positive results,
or be inconclusive. Hence prisoner 1 will only answer negatively to
Q1 when P, is conclusive.

— A resetting procedure that allows prisoner 1 to set the system back
to its original position (the number of souls in the system is as the
transmitter left it). This allows him to proceed with additional expe-
riments.

The two testing procedures will eventually give an answer to the observer.

e Now prisoner 1 triggers prisoner 2 into an observing phase. That is, they
(more or less) exchange their roles, and prisoner 2 becomes an observer,
while prisoner 1 starts following a simple rule and so becomes a robot.
Eventually, from the experiments he will conduct on the system formed

11

by the other prisoners, prisoner 2 will find out which bit prisoner 1 left in
the system and then becomes a robot.

e This continues, cycling through all the prisoners. We have each prisoner
i sending a first bit to prisoner i + 1 mod n, then all of them sending a
second bit, etc...

e Using intermediates, any prisoner can send a message to any other, and
not only to his follower in the ordering.

The simpler case n =3
We now describe each step in full for the case n = 3.

Simple rules. The behavior of the prisoners who are not currently observing
will be given by the directed graphs ¢y, with &k a positive integer (see diagram
1). These graphs describe the number of souls each prisoner is eager to have
at any time, and hence determine whether he wants to drop or grab a soul
each time he enters in the room. The graphs are to be read left to right, and
considered to repeat (the dashed line). At any time where more than one option
is offered, the prisoner chooses which option to try with equal probability.

K Trigger

k-1

-

O = N W H U O N ® O O

slosh

XXX -

N

\

ﬁuﬁ
N

~ Cd
See-"

To start with, one of the robots will follow ¢y, and one will follow ¢y,
Assume that kg is big, and k; is bigger. This will be made precise later. We
play the role of prisoner 1, and (for now) only observe prisoner 2 (and 3) running
their instructions ¢y, (resp. ¢k,). More precisely, when we get a chance to go
in the room, we note whether the state of the lightbulb has changed from the
last time we were there (what we call a flickering).

If the total number of souls in the system is 0 (remember we include the
lightbulb in the system!), nothing can happen because both prisoners are both
eager to get more souls, but none are available. If the total is 1, the lightbulb
might be switched on and off some small number of times (if the prisoner who
starts with the soul is initially eager to get rid of it), but eventually one of the

12

2 prisoners will have 1 soul and be eager to have 2, and the other will have 0
and be eager to have 1. So the situation will stall there after a finite number of
flickerings. Similar stops will occur if there are 4 or 5 souls in the system.

On the other hand, if 2 souls are available in the system, the system might
stop in a situation where each have 1 soul and are eager to have 2, but more im-
portantly, the lightbulb might be turned on and off an arbitrarily large amount
of times, if they both keep going through a sequence 2,1,0,1,2,1,0,... (with a
delay in their phases). The lightbulb is then said to flicker indefinitely. The
same thing could happen if there are 6,7,... souls in the system. Finally, in the
case of 3 souls, the system might produce indefinite flickering in the lamp in a
more complicated fashion.

This behavior is summarized in the following chart.

Number of souls | Indefinite
in the system flickering
6,7,....ko + k1 possible

4,5 impossible
2,3 possible
0,1 impossible

It is also worth noting that there exists an integer M such that if there are
0, 1, 4 or 5 souls in the system, the system will stall in less than M flickerings.
Hence, observing M + 1 flickerings will guarantee that we are not in any of the
cases 0, 1, 4 or 5, what we call a positive result.

Experimentation. Assume the system contains either 0 or 1 soul, and conduct
one of the following procedures:

P; Add 1 soul to the system. Wait for a positive result for some time. If this
positive result arrives, return Yes, otherwise return unknown.

Py Add 3 souls to the system. Wait for a positive result. If this positive result
arrives, return Yes, otherwise return unknown.

The waiting times should be taken so that we can potentially observe at least
M + 1 flickerings and hopefully get a positive result.
We have the following chart of outcomes:

| # of souls originally | 0 | 1
of souls after adding-step in Py 3 4
Possible outputs for Py unknown, Yes unknown
of souls after adding-step in P; 1 2
Possible outputs for P; unknown unknown, Yes

Hence, a positive result to P; guarantees a positive answer to Q;.

Assuming we did not get a conclusive result we would certainly like to run
further experiments, but the system has probably stalled. What should we do
now?

13

Resetting. If we could return the system to its original state with 0 or 1 soul
(as set up by prisoner 3), we could experiment further. To do this, we would
like to take souls out of the system. It seems hopeless, if for instance one robot
has no souls, the other has 5 and they are both eager to have more. But if
we are ready to give them some, they will eventually have 6 and be willing to
drop the souls again. We can then grab those leftovers, until we are back to the
initial number (0 or 1). This allows us to conduct other experiments, and hence
to determine eventually whether prisoner 3 left behind a soul or not. Note that
we never have to raise the number of souls added to the system to more than
12 to get it moving again, since with 12, at least one robot prisoner is at the
start or into his ‘slosh’ region, and is willing to either take or give souls.

Triggering. Now that we know what the bit sent by prisoner 3 was, we prepare
our message for prisoner 2 by setting the total number of souls to 0 or 1. After
that, we would like to signal prisoner 2 to start his role of observer. This is
where the numbers k; come into play.

Prisoner 2 has agreed beforehand that he will be ‘triggered’ when he has
exactly 18 souls (kg = 18). Note first that we never needed to go that high
during our experimentation phase (we needed to go at most up to 12). So we
can be sure that we have not triggered prisoner 2 before now. We drop those
18 souls in the system, and then start to apply the rule ¢, for some ks agreed
on ahead of time, bigger than k;.

We now have 18 or 19 souls in the system, and each prisoner is running a
rule ¢,. We only have robots running the place! So the whole system evolves
according to a random walk. Since there are only 18 or 19 souls there are finitely
many possible states. Moreover, we know that one of the prisoners has at least
6 souls, and hence the option of increasing or decreasing his amount of souls.
This guarantees that our random walk never stops, and there is a non-zero
probability of getting from any state to any other state. Hence prisoner 2 will
eventually end up with 18 souls.

Now that he has his 18 triggering souls, prisoner 2 just needs to erase them
in his mental count of souls. He is back to 0 souls, and there might be 1 soul
left somewhere else in the system. He becomes an observer and his situation is
similar to the one enjoyed by prisoner 1 at the start.

In the case of 3 prisoners, we can actually take kg = 18, k; = 20,ky =
22,k3 = 24,---, and in general the k’s will increment by 2 each time. The only
requirements are that they are big enough that with that many souls in the
system (or one more if the message is a 1) the system never gets stuck (when all
prisoners are robots), and that prisoners are not triggered too early when one
is trying to trigger someone else. Incrementing by 2 gives just enough leeway so
that the 1 bit message doesn’t set someone else off too early.

Cycling. Now the prisoners just have to cycle through that algorithm, and give
further bits to the prisoner following them in the ordering. This will eventually
allow them to exchange arbitrarily long messages with the other prisoners too.

14

The case of more prisoners

We would like first to identify the important properties that the rules 5 have
that allow the algorithm to work. Really all we care about is the behaviour
of the system as a whole. Specifically we want it to behave in different ways
depending on the number of souls in the system, as shown in diagram 2. In the

o

trigger —
|
>
2
will run indefinitely %5
upper bound 5
for resetting — o]
procedure g
o . . c
can run indefinitely
will stop after at
most M flickers
test for P, — - —
can run indefinitely
test for P, — -
will stop after at
most M flickers 0

case of 3 prisoners, the test for P, is done at the boundary between 1 and 2
souls and the test for Py at the boundary between 3 and 4 souls. The maximum
number of souls that the observer needs to add to the system to reset it is 12.
Also, in sending the first bit, the trigger value k is 18.

Note that in the case of n = 3, the fact that all the rules used are of the
same type is not really important. In the general case, we will have n — 1 types
of rule, all with different trigger values &, and we require the triggering prisoner
to adopt the same type of rule as the one the triggered prisoner is running. He
knows which rule this is just by counting the number of cycles all the prisoners
have gone through.

The rules. A set of rules that will work for general n are shown in diagram 3.

We set h; to 2, and the other h; are defined recursively, so that h; >
2 23;11 hj. The value T refers to a number of soul exchanges required to cover
that section of the graph, rather than the number of peaks. Take the number
of peaks s; to be such that the total ‘length’ 2s;h; > T. The value of T will be
specified later.

All experimentation happens for values of souls less than H, so once a
prisoner starts up on the long journey towards H, they will never be able to
come back down until the observer wants to reset the system. H has to be set
larger than h,,_o + Z?;f h; (the sum of the highest peak in each ¢, ;) so that

15

X Trigger . Trigger . Trigger
£y 42 42
67 Y 42
y . y slosh y . y slosh y . y slosh
£y LY LY
£y LY LY
" 54 " y " y
h bz
h, h,s
h [
n, h,
h, h,
0 [
- -
@ @

the normal running of the system, with other prisoners on their zig-zags down
below will not bring an escapee to H and allow him to go back down. Again we
define the exact value of H a little later, but assume for now that it is big.

The trigger values k are different for each prisoner. The algorithm will work
with k& > (n — 1)H so that with that many souls in the system, at least one
prisoner is into his slosh range and therefore the system cannot get stuck when
that many are added. They need only increment by 2 each time, as in the case
for 3 prisoners. To trigger the prisoner running rule ¢ . simply add k souls,
and your message (0 or 1), and become a robot. As in the case of 3 prisoners,
the random walk will eventually end up with the prisoner being triggered on k&
souls, and all other prisoners have triggers of at least 2 more than &k so will not
be triggered prematurely.

Clearly this system will not run indefinitely with 0 souls. It is also clear
that it might run indefinitely with Z;:lz h; souls. Here is one sequence that, if
followed, will run forever: Call the prisoner applying the rule ¢, ; robot i. To
start, set robot 0 to be at the bottom of any valley on his cycle, just before a
peak of altitude h;, and give to each robot i exactly h; souls (necessarily starting
at the peak of his cycle). If robot j gives his h; souls to robot 0 and then takes
them back, we are in a similar position to the one we started with. We can
continue doing this indefinitely.

We need to show that the system gets stuck for some higher value of souls.
This will require us to prove that no proper subset of the robots can run indef-
initely, if there are less than H souls in the system, which is proved later on.
Given this, it only takes one robot on his way up to H to stall the system. We
can ensure this will happen by putting in hA,_o + Z?;lz h; + 1 souls. We can
now take H to be any number larger than this number, say h,,—o+ Z?;f hi +2.

The power of the Collective. We now show that with less than H souls,
the system cannot run indefinitely if not all robots are involved. Assume the
system is running indefinitely with a minimal number of souls changing hands.

16

Trigger

AN

NN T

slosh

Once a robot starts up towards H, he can only take souls and never return them.
By minimality, he never takes any new souls and might as well not be there.
So we can assume that our subset of robots must be able to run indefinitely
without anyone leaving towards H or giving souls to any robot going towards
H.

First, we will assume that ¢, ¢ is missing. Assume a subset not including
4,0 runs, then there is a minimal subset not including . ¢ which runs.

Now, let m be the largest number such that ¢, ., is included in this subset.
As the subset is minimal ¢, ,, must complete a full cycle, as if it did not then
we could simply leave robot m out. Thus, at some time robot m must have
h., souls. However, by the choice of the sizes of the peaks h,, > 22—01 hi, it
is clear that he can never get rid of them all without pushing one of the other
robots onto its path towards H.

As there are a finite number of initial states (looking only at the robots
below their peaks h;), there is a global bound on the number of exchanges, L,
which can occur before the system halts. T is chosen to be larger than L.

So we are left with the case when ¢, ¢ is included in the subset, but some
©x,m 18 missing. As ¢, o is included it must complete a full cycle (as otherwise
it could be left out and we would have the previous case). Once it has reached
the beginning of the series of peaks of height h,, it will, for at least the next
T soul exchanges, behave exactly as ¢, did in the previous case. But this
subsystem is guaranteed to stop before ¢, (finishes its height h,, peaks, as for
at least the next T transitions this subsystem behaves exactly as in the previous
case. Thus ¢, o will never complete its h,, peaks, and so never complete a full
cycle.

Epilogue. We have now proved existence of a strategy. To actually apply this
strategy, we would need to calculate precisely the value of several constants used
in our algorithm. For instance, the constants 7" and M and the values at which
we test for Py, P; are hard to find, particularly within the hour that the warden
has given us.

Acknowledgements and sources

The origins of this problem are not clear. According to legend [6, 7], similar
problems have been the delight(bulb) of Hungarian mathematicians. The first
written occurence we could find of the problem involving 100 prisoners and a
unique lightbulb is on an online forum hosted at Berkeley [8]. Another variant
involves 23 or 24 prisoners, two lightbulbs and the obligation for the prisoners to
always change exactly one of the lightbulbs. This one appeared on the Ponder
This website of IBM Research [7]. Those two online occurences, on the Berkeley
forum in February 2002 and the IBM website in July 2002, were followed by
several others, in either of the two versions. A thread was immediately started on
rec.puzzles [5], it was published in the Fall issue of the Mathematical Sciences
Research Institute newsletter Emissary [3], and the problem was finally asked

17

on the popular radio show Cartalk [6]!
We would like to thank Andrew Bennetts for introducing us to the original
problem.

References

[1] Bertram Felgenhauer. 100 prisoners and a lightbulb. Newsgroup rec.
puzzles, available through http://groups.google. com, July 28 2002.

[2] William Feller. An introduction to probability theory and its applications.
Vol. I, pages 46,59. Second edition. John Wiley & Sons Inc., 1968.

[3] Mathematical Sciences Research Institute. Emissary newsletter, November
2002. Also available at http://www.msri.org/publications/emissary/.

[4] Renata Kallosh and Andrei Linde. Dark energy and the fate of the universe.
2003. http://arxiv.org/abs/astro-ph/0301087.

[5] "Oleg". 100 prisoners and a lightbulb. Newsgroup rec.puzzles, available
through http://groups.google.com, July 24 2002.

[6] National Public Radio. Cartalk Radio Show. Transcription
available at http://cartalk.cars.com/Radio/Puzzler/Transcripts/
200306/index.html.

[7] IBM Research. Ponder This Challenge. http://domino.watson.ibm.com/
Comm/wwwr_ponder.nsf/challenges/July2002.html, July 2002.

[8] William Wu. Hard riddles. http://www.ocf.berkeley.edu/ wwu/
riddles/hard.shtml#100prisonersLightBulb, February 2002.

18

